56 research outputs found

    Behavior of Droplets in Microfluidic System with T-Junction

    Get PDF
    Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn't allow regular out-flows due to the fact that the continuous phase doesn't adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases

    Bloch oscillations of ultracold atoms: a tool for a metrological determination of h/mRbh/m_{Rb}

    Full text link
    We use Bloch oscillations in a horizontal moving standing wave to transfer a large number of photon recoils to atoms with a high efficiency (99.5% per cycle). By measuring the photon recoil of 87Rb^{87}Rb, using velocity selective Raman transitions to select a subrecoil velocity class and to measure the final accelerated velocity class, we have determined h/mRbh/m_{Rb} with a relative precision of 0.4 ppm. To exploit the high momentum transfer efficiency of our method, we are developing a vertical standing wave set-up. This will allow us to measure h/mRbh/m_{Rb} better than 10−810^{-8} and hence the fine structure constant α\alpha with an uncertainty close to the most accurate value coming from the (g−2g-2) determination

    Self-stabilizing algorithms for Connected Vertex Cover and Clique decomposition problems

    Full text link
    In many wireless networks, there is no fixed physical backbone nor centralized network management. The nodes of such a network have to self-organize in order to maintain a virtual backbone used to route messages. Moreover, any node of the network can be a priori at the origin of a malicious attack. Thus, in one hand the backbone must be fault-tolerant and in other hand it can be useful to monitor all network communications to identify an attack as soon as possible. We are interested in the minimum \emph{Connected Vertex Cover} problem, a generalization of the classical minimum Vertex Cover problem, which allows to obtain a connected backbone. Recently, Delbot et al.~\cite{DelbotLP13} proposed a new centralized algorithm with a constant approximation ratio of 22 for this problem. In this paper, we propose a distributed and self-stabilizing version of their algorithm with the same approximation guarantee. To the best knowledge of the authors, it is the first distributed and fault-tolerant algorithm for this problem. The approach followed to solve the considered problem is based on the construction of a connected minimal clique partition. Therefore, we also design the first distributed self-stabilizing algorithm for this problem, which is of independent interest

    Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy

    Full text link
    In this paper, we present significant progress performed on an experiment dedicated to the determination of the Boltzmann constant, k, by accurately measuring the Doppler absorption profile of a line in a gas of ammonia at thermal equilibrium. This optical method based on the first principles of statistical mechanics is an alternative to the acoustical method which has led to the unique determination of k published by the CODATA with a relative accuracy of 1.7 ppm. We report on the first measurement of the Boltzmann constant by laser spectroscopy with a statistical uncertainty below 10 ppm, more specifically 6.4 ppm. This progress results from improvements in the detection method and in the statistical treatment of the data. In addition, we have recorded the hyperfine structure of the probed saQ(6,3) rovibrational line of ammonia by saturation spectroscopy and thus determine very precisely the induced 4.36 (2) ppm broadening of the absorption linewidth. We also show that, in our well chosen experimental conditions, saturation effects have a negligible impact on the linewidth. Finally, we draw the route to future developments for an absolute determination of with an accuracy of a few ppm.Comment: 22 pages, 11 figure

    Ni–Zn hydroxide-based bi-phase multiscale porous nanohybrids : physico-chemical properties

    Get PDF
    Please read abstract in the article.The Algerian minister programhttps://link.springer.com/journal/132042020-05-25hj2020Physic

    Proposal for new experimental schemes to realize the Avogadro constant

    Get PDF
    We propose two experimental schemes to determine and so to realize the Avogadro constant N_AN\_{A} at the level of 10−7^{-7} or better with a watt balance experiment and a cold atom experiment measuring h/m(X)h/m(X) (where hh is the Planck constant and m(X)m(X) the mass of the atom XX). We give some prospects about achievable uncertainties and we discuss the opportunity to test the existence of possible unknown correction factors for the Josephson effect and quantum Hall effect

    Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment

    Get PDF
    We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment

    ELGAR - A European Laboratory for Gravitation and Atom-interferometric Research

    Get PDF
    Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1–10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space–time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3 x 10 [hoch]-20 / [Wurzel] Hz at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology

    Fault Tolerant Network Constructors

    Get PDF
    In this work, we consider adversarial crash faults of nodes in the network constructors model [[Michail and Spirakis, 2016]]. We first show that, without further assumptions, the class of graph languages that can be (stably) constructed under crash faults is non-empty but small. In particular, if an unbounded number of crash faults may occur, we prove that (i) the only constructible graph language is that of spanning cliques and (ii) a strong impossibility result holds even if the size of the graphs that the protocol outputs in populations of size nn need only grow with nn (the remaining nodes being waste). When there is a finite upper bound ff on the number of faults, we show that it is impossible to construct any non-hereditary graph language. On the positive side, by relaxing our requirements we prove that: (i) permitting linear waste enables to construct on n/(2f)−fn/(2f)-f nodes, any graph language that is constructible in the fault-free case, (ii) partial constructibility (i.e. not having to generate all graphs in the language) allows the construction of a large class of graph languages. We then extend the original model with a minimal form of fault notifications. Our main result here is a fault-tolerant universal constructor: We develop a fault-tolerant protocol for spanning line and use it to simulate a linear-space Turing Machine MM. This allows a fault-tolerant construction of any graph accepted by MM in linear space, with waste min{n/2+f(n),  n}min\{n/2+f(n),\; n\}, where f(n)f(n) is the number of faults in the execution. We then prove that increasing the permissible waste to min{2n/3+f(n),  n}min\{2n/3+f(n),\; n\} allows the construction of graphs accepted by an O(n2)O(n^2)-space Turing Machine, which is asymptotically the maximum simulation space that we can hope for in this model. Finally, we show that logarithmic local memories can be exploited for a no-waste fault-tolerant simulation of any such protocol
    • 

    corecore